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We obtain the average proliferation law of periodic orbits for a rectangle billiard from semiclassical
considerations by deriving the trace formula. We discuss that this law is the classical analog of the

celebrated Weyl formula.
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Since the advent of the old quantum theory, it is well
known that integrable systems can be quantized exactly
even under semiclassical considerations. It is a classi-
cal problem paraphrased by Kac [1] “Can One Hear the
Shape of a Drum ?” where one aims at inferring classi-
cal properties of the system (e.g., area or volume of the
cavity, shape, etc.) from the eigenvalue spectrum of the
system. In this Brief Report, we obtain the law of prolif-
eration of periodic orbits for the well-studied incommen-
surate rectangle billiard by deriving the trace formula [2].

The spectrum of the rectangle billiard is such that
the two wave numbers are k, = (7ny/a,nmny/b), where
n € Zy, a and b are side lengths of the rectangle with
a/b = v an irrational number. Not only is the choice
of incommensurate «y generic but also this makes the
spectrum of the rectangle nondegenerate. Using periodic
orbit theory, one can derive the trace formula for the
rectangle billiard where one can also predict the spectral
correlations in this and other more complex systems [3].
As we obtain the oscillatory correction to the density of
states as a sum over periodic orbits, it can be seen [4]
that the first term in the Weyl formula (the area term
equal to ARE /4w, Ap is the area of the enclosure and F
is the energy) is obtained on taking the zero-length peri-
odic orbits. There is a lot of interest on the inversion of
the trace formula in general in order to obtain the length
spectrum of regular and chaotic systems [5]. It is known
that the results are not exact and there remains open
problems. We obtain the length spectrum and hence the
proliferation law for a very simple situation, significantly
though we shall get an exact result. Precisely, we get the
law, viz. the number of periodic orbits of length < ¢,

N(¢) = af? + ¢ (1)

with correct values of constants a and 3. The prolifer-
ation law by itself is not an original result as we have
obtained this law from number-theoretic considerations
(6] with o = 7/16ab and 8 = 7(a + b)/4ab.

Let us consider the lattice in the k space, periodicities
are m/a and w/b. Thus the periodicities imposed on the
real space are 2a and 2b. The lattice formed in the real
space can be used to ascertain the density of periodic
orbits. Of course, there will be a term contributing from
the full lattice and the other two from the axes when one
of the periodicities is present. Mathematically then, the
correct density of corresponding to the quadrant in real
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space can be written as:

AN =D 6(—tm)+ D 6(t—tm)

allm ma,m;=0

+ ) (- tm). (2)

my,my=0

Note that although the axes terms (i.e., when m; or m2
is zero) are contained in the first term, we must add their
contribution again as they are topologically distinctly dif-
ferent. Thus, taking £ as a continuous variable,

2 . .
AN(L) = % / PPLE(L — L) Y eftamm/atitamna/b - (3)

where (£1,£2) are the two components of the vector to-
wards the lattice point in the direct space. From indi-
vidual wave vectors, the contribution from the the first
term is

72

4Noa(f) = — / d2€8(L — Le)ei*n, (4)

Using now the polar representation of &, |kn| = kn and
the well-known identity [7]

eilkncosﬂ — Z imeingm([kn) (5)
in
Non(€) = 12- dOfeitkncosd (6)
On 4ab ’

we get on similar contributions from other wave vectors
the following:

No(8) = g€ Jo(tha). (7)

On integration over £, we get the cumulative length spec-
trum from the first term of the energy density,

Fo(t) = %le;lJl(lkn). (8)

The small k, corresponds to large length scales and hence
this region of k is expected to give at least the average
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proliferation law which will be the dominant term, using
the fact that Jy(x) ~ x/2 for small z, we get exactly
the quadratic term in the proliferation law. However, we
must also estimate the expression if the whole lattice of
wave numbers is accounted for. This can be done by con-
verting the double summation into an integral and going
over to polar representation in the direct space — we get
exactly 1/4 which is obviously very small as compared
to the quadratic term. In a similar way, the axis terms
can be calculated, we now present the full expression for
the proliferation law as obtained from the lattice of wave
vectors for the incommensurate rectangle billiard,

i m(a +b) 1

= £ L+ - 9
6ab’ T ab T3 ®)

A significant point that we wish to stress here is that,
proceeding in the same way starting from the periodic or-
bits, one gets the Weyl formula, as is well known. Thus,

F(¢)

in this sense, we have brought out an interesting fact
— the average proliferation law is the classical analog
of the Weyl formula. The inversion could be effectively
carried out because the rates of growth of lattice points
in direct and reciprocal space is exactly the same for
rectangle billiard (we believe this to be the case for all
the integrable billiards). Moreover, in chaotic systems,
the inversion cannot be carried out explicitly because the
Weyl formula is always algebraic (e.g., quadratic for the
two-dimensional billiards) but the proliferation law is an
exponential one.

Owing to our previous study [6], we know that the law
of proliferation for pseudointegrable billiards (for every
class n) of periodic orbits is also quadratic, we believe
that the inversion can be carried out exactly even for
these systems — the crux lies in the possibility of enu-
meration and classification of periodic orbits by replica-
tion and stacking technique pioneered in Ref. [8].
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